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SUMMARY

The longitudinal foroes due to the longitude-dependent part of the Earth's
gravitational potential oan have considerable effects on nearly synchronous
satellites. An a preliminary the special case of the oiroulgr equatorial orbit

is considered. An approximate solution is given for the motion under the

combination of all tesseral harmonics, and the relation to the Jacobi integral

is discussed. For general orbits the disturbing function for the combination
of all tesseral harmonics is developed in terms of the usual elliptic elements
and the resonant terms identified and isolated. With a suitable definition of

the mean longitude, it is shown that the motion in 1 gitude relative to the
Earth is equivalent to that of a particle moving in a one-dimesional potential,

provided only that the eccentricity is small.
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Although various authors have disoussed the motion of nearly synchronous

satellites of the earths only Musen and Bailiei and Morando20 have oonsidered

other than a circular equatorial orbit, the so-oalled 'geostationary' satellite.

The treatment given by Musen and Bailie is valid for large eooentrioities and

all inclinations but includes only the J202 tesseral harmonic. Morando, using

von Zoipel's method as modified by Hori to deal with resonance, has given the

stable positions and the periods of libration for each of the tesseral harmonios

separately up to 4 = 4, m = 4. In a previous paper some results were given for

the circular equatorial orbit which hold for the superposition of all tesseral

harmonics, and the object of the present paper is to extend these results to

more general orbits and in particular to nearly circular but inclined orbits.

2 THE GRAVITATIONAL POTENTIAL

Vfe will write the gravitational potential U(r,8,y) due to the earth at

distanoe r from the oentre of the earth, and at the point with oolatitude 0 and

longitude f, in the form

U(r,e,v) - Uo(r) + U'(r,o,,) , ()

where U0 = Wr is the central potential, with p a GM where M is the mass of the

earth, and

00 Z

(r,e,) . ()J,.(R/r) t p (ooa 0) con .(,- ,,) . (2)

"=2 m=1

Here R 1s the mean equatorial radius of the earth, and J£m & andm are the

constants associated with the (ton) tesseral harmonic. Also P&(s) is the

associated Legendre function defined by

P 5) -( 1 -s2)s/2 e PLCs) --2 nn/ 2  I dt' m  (&2ds 2& 6I dl(+ (

009 (3)

The terms with m = 0 would give the zonal harmonics, i.e. the axially symmetric

part of the field, and are omitted. Also the possible term in (2) with & = 2,

m = I must be very small since the axis of rotation of the earth must very

nearly coincide with the principal axis5, and this term is also omitted.



In general the tesseral harmonios lead only to short-period variations;

indeed, values of the oonstants J m and p&m have been determined from these

short-period variations in the orbital elements of olose-earth satellites. For

a nearly synchronous satellites howeverp the longitudinal forces due to the

tesseral harmonios act continuously in the same sense and produce long-period

changes in the energy, the semi-major axis, and the mean motion, thus leading

to a libration in longitude. The main effeot of the axially-symmetrio terms

which have been omitted from (1) and (2) (the only signifioant term is the

second zonal harmonic whioh oorresponds to the oblateness of the earth) is to

produce a regression of the orbital plane which at synohronous height is of

much longer period than the libration in longitude. The motion of distant
circular orbits, including synchronous orbits, under the combined effect of

the earth's oblateness and the luni-solar forces has recently been discussed by

Allan and Cook6 .

3 CIRCULAR HQUATORIAL ORBIT

If the orbit is circular and equatorial, the satellite will appear to be

nearly stationary relative to the earth, apart from the long-period motion in

longitudep and this special case is amenable to a simple treatment. We will
ignore the small north-south component of force due to the odd tesseral
harmonics (ise. those with 6-m odd, which are antisymetrio about the

equatorial plane) and assume that the satellite remains in the equatorial plane.

Taking the polar coordinates of the satellite as r and q, and the angular
velocity of rotation of the earth as not the mean motion of the satellite is
n a n 0 + . Then the radial and transverse equations of notion can be written

as

r(nor ' ()r

I 1r2 (no+ 2f(n.+) + r% u , (5)r d

where Pr and P are the radial and transverse components of the disturbing

force derived from (2). We may now expand about the equilibrium solution of
these equations for zero perturbing force, namely
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of O r a a &O3 0(6)

by writing r = a0 + p. and retaining only terms of first order in p and .

This prooedure leads to the equations

i53n 2p -2& n0  F r (7

2no A+ a o  = P (P (8)

By eliminating p between (7) and (8) we oan derive the following single

equation for 4

d2
ac [,(v n+ = -Pi3n 2P -2n d-(r) + A:(_ ) p (9)

% 0 (P o dt r t 2

Since a/at operating on Fr or F 9 is equivalent to l'(8/8r) + ~</pthe second
term on the right of (9) is of higher order than the first term, and may be

neglected. Similarly the third term on the right of (9) is smaller still, and

is also neglected. Also provided the long-period motion in longitude is slow

compared with the rotation of the earth, y(iv) on the left may also be negleoted.

Finally this leaves the approximate equation

a 0 -3P . (to)

It is worth noting that acoording to (10), the apparent longitudinal aooelera-

tion relative to the earth ir, the long-period motion is three times as great

an the true acceleration and in the opposite sense. Pbysioally if the longitu-

dinal foroe is in the direction of motion of the satellite (F > 0), the energy

is inoreasing, so that the semi-major axis is also increasing and the mean

motion is decreasing.

Equation (10) contains only the longitudinal oomponent of the distuing

fore in the equatorial plane, which is given by

P - -L U.(,o,,2,9) 011

where the disturbing potential is given as a general superposition of harmonios

in (2). Then from (10) the equation of motion is
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3n. m J,(E/ao)t P(0) sin m(q- , (12)

Sinoe e.(O) vanishes when (4 -a) is oddl only the even tesseral harmonics

oontribute to the longitudinal disturbing foroe, Equation (12) may be

integrated at onoe to give

1 .2 3 2 Z' Tt,(R/a )6 pm ) 005 3~ osai'2 + 3no 0

Thus the long-period motion in longitude relative to the rotating earth is

equivalent to that of a partiole moving with the velooity a 0 in the one-

dimensional gravitational potential -3U'(aoiV2,q ).

Deduction from the Jaoobi Integral - The result (13) oan also be derived as an

approximate form of the Jaoobi integral of the system. Assuming the satellite

remains in the equatorial plane so that we ean set 6 a n/2 and 0 0, the

Lagrangian of the system may be written in terms of r and p as

2 2 2 (no + ) 2 + Wr + U '(r,r2,p) . (04)

Since the Lagrangian is time-independent, the system possesses the Jaoobi

integral, H = oonstant, whioh takes the form

12 r 2.2 no)-1/r-'(r,&/2,#) = o*stant (15)

We will now show that this reduoes to the approximate result (3) to order

J., where J stands for J.. First of all from (13) * is of order J1/2, while

from (12) * is of order J, and in general the kth derivative of y is of order

J/2. On the other hand we oan write equation (4) in the form

¢no ) 2  * . o(J) . a+O0¢) , (1+)

whioh leads to

r w= o - + 81 + O(jC/2)o (17)3n
o

where 6 1 is of order J, Consequently
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p - + /njl O(J1/2)I , (18)
3 o - 0

so that p is of order J1/2, while (which is also i) is of order J ard is

of order J3/ 2 .

In (15) f2 may be negleoted since it is of order j2 ard on substituting

from (17) for r2 and r- 1 the remainder gives

12 2 2n) o  k$
12 a. 0 no  3+ no  9 2 + 28o+,O(j3/2)

0 an 
o

IM2~~~ ~ ~ g + + SL+Oj3/2)] -t j*/#p

= constant + 0(j3 2)

After multiplying out the first product and adding, the terms involving 61
cancel, leaving the result

o o + ' '1 +  - U'(ao"r/2p) oonstant

i~e.

1 2
ae + 3U'(ao,/2,v) c constant + o(J3/2)  (19)

which agrees with the previc.s result (13).

In the light of this consideration of orders of magnitude, it is clear
that (10) is derived using only that part of (7) which is of order J1/2, namely

2-3nop-2a 0 n0  0 o+o(J) . (7')

In fact (7) is not accurate to order J, since among the quadratic terms

neglected the following three are of order J:

go 2 2n P + 3n p2 /a

This, however, does not affect the results (10), (12) and (13)0



a C

4 DE MLOMENT OF THE DISTURBING FUNCTION FOR GENERAL ORBITES

For a more general orbit, the motion in longitude is still controlled by

the longitudinal force experienoed by the satellite, and it oan be shown4 that

the motion must have the same general oharacter of an oscillation in longitude

even for orbits with considerable inclination and ecoentricity. However it is

not easy to evaluate the mean longitudinal force when the satellite is no

longer nearly stationary relative to the earth.

It seems simplest to retuLwn to the disturbing potential (2) and express

it in terms of the elements of the orbit. The shortest, and also the most

general, development of the disturbing funotion seems to be that given by

Izsak7 . He points out that on rotating the coordinate system the Zth degree

spherical harmonio P(oos e) exp(im) must transform to a linear combination

of the 4th degree spherical harmonics P 4(oos e' ) exp(im' 40) where el and 9T

are the polar coordinates in the new system. If the new coordinate system is

chosen with its pole OZI coincident with the pole of the satellite orbit then

et z 7V2 and the associated Legendre polynomials Pme(oos 01) reduce to constants.

Moreover sinoe P ' (0) vanishes when 4 + mt is odds, the sum contains only terms
with 4 + ml even. The actual form of the result oan be derived from texts on

the applications of group theory in quantum meohanios (e.g. Wigner or Rose ),
and can be written as

4.
.t-o

where

t-2j' 4- (I.IA!)k"( 2j)\ /2j ~-m-2j-2k 8-6+m.2j+2k

4 2 ,1;- 2"- Y
k

... (21)

In (20), fl is the right ascension of the ascending node, w is the argument of

perigee, f is the true anomaly, and not is the current sidereal time of

Greenwich, so that 0- not is the angle from the current position of Greenwich

to the ascending node and w+ f is the angle from the asoending node to the

current position of the satellite (see Figl. ). Also in (21), o a oOn 1/2 and

a a sin 1/2 where I is the inclination, so that the K- ooeffiolents depend only
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on the inclination. The form K' 2  quoted here is identioa to Issak's ,a"on4- the 4oM to. h

except that the factor i &' m has been inoluded within the ooefficient.

With the aid of (20) the disturbing potential (2) can be written as

U' = E U , (22)

where the contribution of the (4,m)th tesseral harmonic is

2j)(o +. f mpUf43  u(K/) Jt4 3 (l/r)4 1+ R Z m K4 ' xp i( (42)wf My2 J

ja~ Gas (23)

Here R denotes the real part. It has been convenient in (23) to introduce the

quantity yl given by

U= - + nt - , (24)

which is the current longitude, relative to the ascending node, of the meridian
f a4p associated with the (4,m)th tesseral harmonic.

The expression (23) still contains the true anomaly and must be developed

in terms of the mean anomaly M according to

(r/a) 4 1 exp(ipf) - i-' X" 1' p exp(iqu) 9 (25), q

qc-oo

which introduces the Hansen coefficients e ' P . These coefficients depend only
q

on the eccentricity and can be expanded as power series in ep and we will reoall

the following properties:

(i) If p q, X ' P = I + O(e2 ),
q

(ii) If p * qO the leading term in ?' P is of order Ip- qj in e.
q

Then fros (23) and (25)

* (a) 4*(Vm)~ 1  ~7~ 4-2j -41, t-2j epi(- 2j) to+ aM-y siq I

, q

... (26)
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which completes the development of the disturbing function in terms of the

elements a,epIO,w and %e, where %I is the modified mean anomaly at the epochp

defined by

t

M n dt + %1 (27)

0

To pick out the terms which will be important for synchronous orbits, we

note that the rate of change of the argument in (26) is

(4-2j) ; + q(n+ j') - m(no - ) • qn - m n 0  (28)

Since n w n0 , the resonant terms are those with q a m, and the resonant part of

the potential can be written as

U (e ~(~a" k2ex"' 2  exp [i( (t-2) jc + m(M - V,)J

... (29)

Since the Hansen ooeffioients in (29) are of order It-m-2j1 in e, the lowest

order of term which actually occurs depends on whether (4- m) is even or odd:

(i) If (4-m) is evenp the lowest order term is given by 2j = 4-rm and
is independent of e.

(ii) If (.9- m) is oddp the lowest order terms are those of order e

given by 2j = t-m ±1.

5 MOTION UNDER THE SEC0ND SECTORIAL HARMONIC ALONE

It seems desirable to consider in more detail the term containing -2,2

which corresponds to the ellipticity of the earth's equator. Although the

coefficients J6m are not very well determined as yet it is probable that J292

is the largest coefficient, and fairly certain that it will give the dominant

term at synchronous height since U., decreases with distance as r " (&+i)o Thus

from (29), evaluating the K- coefficients according to (21) and exparnding the

Hansen coefficients up to order e4 , the resonant part of the disturbing func-

tion for this harmonio takes the form
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L1,2  . C'JJ292(

X ( 10 . -° 0 os
2  + 4 + 0) 2 a2 *

*12(_++ ... ) a 0 (0~4~,~)] (30)

10
This result could also be written down from the work of Cook who has given an

explicit development of the disturbing function up to z = a= 4. He was", how-
ever, only concerned with the 'long-period' terms for non-resonant conditions

and eventually discarded the terms which are important here.

The rates of change of all the elementsaeInw and %I can now be derived

from (30) by Lagrange's planetary equationsllo As will be shown, the motion of

synchronous satellites is determined almost entirely by the variation in the

semi-major axis, and the variations of all the other elements are unimportant.

Consequently we give to order 64 only the equation for dudt. The Lagange

equation for a, namely

da/dt " (2/na)(aU/tl') , (31)

leads to the result

d -/dt 1 2,2 (/a) 2

a( ~e + 6 e4  1. o sin 2(1- , 2 w

A (+ e2  z e4 + . o. 2 a 2 sin 2(M- '02 02)

L+ . .0.) s4 sin 2(U-~ 2  ) . (32)

Clearly the most useful variable to describe the motion is simply the

combination

M -01, 2
+ "(M++n) - not - 2 2



12

whioh ooours in the argument of the resonant term of sero order in e in (30).

The slowly-varying quantity (9+ w+ 0) - not defines the men lonitude of the

satellite relative to the earth, and we will write

- (+w + )-n 0 t f ndt-n o t+i g (33)

where e' = %I + t + 0 is the modified mean longitude at the epooh.

It is fairly easy to interpret ; in terms of the positions of the nodes. For

an exactly synohronous satellite (n = n0) the ground-traok on the earth is a
fixed ourve whioh degenerates to a symmetrioal figure-of-eight oentred on the

equator if the orbit is also oiroular (see Fig.2). For an eooentrio orbit the
true anomaly is -w at the asoending node (t a tN), and (%-w) at the desoend-

ing node (t . tN,)j so that from Kepler's equation the mean anomaly takes the

values (- w + e sin w) and (,x- w- e sin w) at the asoending and desoending nodes

respeotively. Using these values in (33) the longitudes of the asoending and

desoending nodes relative to the earth are respeotively

n-notN a q-esin w

(n +%)-notN, a +e sinw ,

i.e. ; is given by the mean of the asoending and descending nodes on the earth.

In practioe the satellite is not exaotly synohronous so that ; is slowly-

varying and the ground-traok ohangesa, but the value of ; at any instant oan

still be determined by interpolation

Using the man longitude ; the rates of ohange of all the elements for a
nearly oiroular orbit are as follows:

da/dt a - 12 n J2 , 2 (11/a) o' sin 2(- '2,2) + 0(e2 )

de/dt - 3ne J2, 2 (p/a) 2  o sin 2(;- T2, 2 ) _ 9 02 2 sin 2(;- T2 , 2 -)I + 0(e0)

dI/dt a 6n "2 ,(/a) 2 o3 s sin 2(;-2,2) + 0(e)

dq/dt - - 3n J2 g2 (/a) 02 oos 2(;- '2,2 ) + 0(e 2 )
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da/dt a 3n J2 ,2( /a) 2 - o(1 + 3 02 ) oos 2(;- '2,2)

+ 9 02 o2 oo 2(;-q2,2 -w)J + O(e
2 )

dx'/dt a 3n J2, 2 (ra) 2 !11 1 coo 2(- 05 2 #2)

- 9 02e2 5oo 2(;-T2,2 -)] + O(e2) (34)

There are terms in the last two equations of (34) whioh are of sero order in e

yet still depend on w, but these terms oanoel on forming the equation for .

Thus from (33)

d/dt - (n- n) + l d /dt

and differentiating onoe more,

d2;/dt2  . dI/dt + d2el/dt 2  .(35)

Then from the first of (34),

dr/dt a + 18n2 j 2 02 (/a)2 o04 sin 2(;- 12,2) + 0(02) . (36)

Likewise from the last three of (34),

de'/dt a 6n J2 , 2 (R/&)2 02(k0 2. 1) co 2(;- T292) + O(e2) , (37)

and differentiating onoe more

ateI/dt 2  12n d/ dt J2, 2 (/a) 2 02( o2 1 ) x n 2(;- 92,2) + 0(e 2 )

600 (38)

Sinoe d;Vdt << n, the seoond term on the right of (35) is negligible compared

with the first term. In faot (36) is of order J, while (38) is of order j3/2

since dj/dt is of order M ./2. To lowest order the notion in man longitude is

controlled ony by the variation in the semi-major axis, and if the seocond term

in (35) is neglected the equation of notion can be written, to within order 92

as



where

k 2  M 36n2 J2 , 2(E/a) 2 4 . (o)

There are olearly four positions of equilibrium; the two positions

4P2,2 ± n/2 (on the minor axis of the earth's equatorial seotion) are

stable, while those at " ' P2 , 2 ard T s V2p2 + x (on the major axis) are

unstable. To integrate (39) it is more oonvenient to ohange the origin to

one or other of the two stable positions by writing

* - ; - ,2 -2 ±/2

so that (39) beooes

1 22 sin2 . ()

The first integral of (41) oan be written as

*- k oos a constant 0 0 - (.2)

where *o and ;o are the initial values. The satellite will be captured in an
effeotive potential well and will osoillate about one or other of the two

points of stable equilibrium provided that

;2 < k2 0032 00".( )
0 0

If this condition is satisfied, * will osoillate between the limits ± 4n says

where

k2 2t *2 2+ k 2 si? o

and (42) can be written as

12 - k '(, ,- sin . 4) . (45)

From (45) the period of a complete osoillation is
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*a j/i2 i 2  ~/

T , f .(in 0-- sin2  *a an U)

0 0

.. (46)

The result can be written in the alternative forms

T u K(sin Z x k 2 Fl(j,';1;sin2 *m) ,(7)

where K(sin * m ) is a complete elliptic integral of the first kind, and 2F1 is

the ordinary hpergeometrio function. If the amplitude of the oscillation is

smallp the period is approximately 21/k, which is about 780 days for an orbit
of low inolination if we take J2 , 2 - 2 x 10 6 . The period increases with the
amplitude of the oscillation and approaches infinity as *m approaches r,/2.

To return to the variation of the remaining elements in (34), it is clear
that de/dt is completely negligible. Both dI/dt and dq/dt must certainly be less
than 3n J2 2

( R -a) 2 which is approximately 5 x 10 5 degrees/day takingJ 2 J -6
J2,2 2 10 . The inolination oscillates as the satellite performs a libra-
tion around a position of stable equilibrium. The remaining quantities d4/dt
and d%'/dt are rather larger, and also more complicated; in particular there are
parts of zero order in e which depend on the argument of perigee. However for

the more meaningful oombination el given in (37),

de/dt (18n J 2 , 2 (R/) 2  ,

which is approximately 3 x 10 "- degree/day, again taking J 2 ,2 w 2 x 10 6 . For

the first term on the right of (35), we have from (36) that

dWdt c 18n2 J2 #2(E/a)2  ,

whioh is approximately 2 x 10 3 degree/day2 . From (36) and (38) the ratio

between the two terms on the right of (35), taking I = 0 for simplioity, is

(2/n) d;/dt + O(e2 ). Now from (45) d9/dt 4 k, where k a 10- 7 seo 1 for
12,2 " 2 x 10"6# so that the ratio is at most about 2.5 x 103, and the second

term On the right of (35) is only a small corrotion.
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6 MOTION UNDER THE COMBINATION OF ALL TESSMAL HhIMONICS FOR e SMALL

From the development of Seotion 4 and in partioular from (29) et seas the
resonant part of the complete disturbing function to lowest (sero) order in e

may be written as

U* - (W-R) Z J4,(E,/a)6 1 " 005o m(Mo +w- q.) + 0(e) . (48)

Here the dash denotes that the summation is only over the even tesseral harmonios;

the part of order e arises from the odd tesseral harmonios. In writing (48), we

have used the properties of the Hansen ooeffioients and also the faot that,

aooording to (21), the K- coefficients are real for 6- m even. This disturbing

function is then adequate to describe the motion for orbits at any inclination

provided the eccentricity is small.

From (20) it is clear that when I a 0, e = v/2, and consequently
- 8 Po(0) for I x 0. Thus it is possible to write, when 6- m is

even#

K,,(I) - D CI) PM(O) , (49)

where eaoh D a I I when I u 0. Also from (24) ard (33)

M +,4 W M (50)

so that the resonant part of the dit.urbing function takes the form

u, . (P/R) , ) (0) D (I) 003 I(M- qM) + o(e) , (51)

where the sum Is over the even tesseral harmonics. The coefficients DIm for

the five even tesseral harmonios up to & a a a are easily found from (21) or

from the explioit development of Cook10 and are given in Table I together with

the values of P(O).



17

The ooeffioients D,3 up to £ m . -

Harmonios PM(O) D .(I)

(2,2) 3 D2.2 0°

(3,1) -3/2 D I .0 02 (1-10 52+15 a4)

(3.0) 15 D3,3  0 6

(4,2) -15/2 D4 j 2  o( - 52+28 s4)

8
(4,4) 105 D = 0

As before the equation of motion for j is given by (35) where the first

and second terms on the right are of order J and j3/2 respectively. Neglecting

the higher order term and combining (35) and (31),

d2;/dt_ dn/dt =-(3/a2) au'*/a; (52)

where a/a' in (31) has been replaced by a/8; on aocout of (50). Then from

(51) and (52), '

d2 Ifdt 2  . 3n° 2 a j P(E/a)£ pM(O) D£.(I) sin m(;- '£. * 0(e)

.. (53)

In finding the equation of motion for the mean longitude, we have taoitly

assumed that the odd tesseral harmonics, which are lumped together as the terms
of order a in the potential, only contribute terms of order e to (53). This is

fairly olear physically since the odd harmonics are antisymetrio about the

equator. However we ought to consider the effect of the odd harmonics on all

orbital elments as we have done in (34) for the J2.2 term. Going back to (29)

and using Lagrange's planetary equations, it is easily shown that the odd

harmcnios contribute terms of order e to da/dt, dI/dt and d4/dt* As is to be

expected the odd harmonics are more effective in changing the position of

perigee and give terms of zero order in e in de/dt and of order e"I in 4 dt and
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The coefficients D, up to £ - m s

Harmonics Pt,(o) D &M(I)

(2,2) 3 D2s 2 0

(3,1) -3/2 D3 ,. 02 (1-1o 2+ 15 48 )

(3,3) 15 D 30 0 6

(4,2) -15/2 D , 2 . 0 (-1. 2+28 s4)

8
(4j4) 105 0

As before the equation of motion for ; is given by (35) where the first

and second terms on the right are of order J and j3/2 respectively. Neglecting

the higher order term and oombining (35) and (31),

d2;/dt 2 . dn/d = - (3/a ) aui/a; (52)

where a/a%' in (3i) has been replaced by a/8; on account of (50). Then from

(51) A (52),

d2-d 2  2 t

R 3n, 7 m PVa' t(O) D,.(1) sin ,(;- ',) . 0(e) .

•.. (53)

In finding the equation of motion for the mean longitudes, we have tacitly

assumed that the odd tesseral harmonics, which are lumped together as the terms

of order e in the potentials only contribute terms of order e to (53). This is
fairly clear physically since the odd harmonics are antisymmetrio about the

equator. However we ought to consider the effect of the odd harmonics on all

orbital el.ments as we have done in (34) for the j2p2 term. Going back to (29)

and using Lagrange's planetary equations, it is easily shown that the odd

harmcnios contribute terms of order e to da/dt, dT/dt and f/dt. As is to be

expected the odd harmonics are more effective in changing the position of

perigee and give terms of zero order in e in de/dt and of oder e "1 in &Vdt and
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d%'/dIt separately. However the contribution to the more meaningful combination

de'/dt is easily shown to be of order e. Thus the add tesseral harmonics

contribute only terms of order e to (53). On the other hand all the even

tesseral harmonios give terms in do/dt, eto of the same form as in (34).

The result given in (53) is similar in form to (12) except that the

longitude ( in (12) has been replaced by the more general quantity ;, and (53)
also contains the factors D m(I). As for the Seostationary case the motion in

; is equivalent to that of a particle moving in a one-dimensional potential and

in principle the satellite could be captured in any potential minimum. Of

course from the estimates which have so far been obtained for the coefficients

J, 9 it is very probable that the potential is dominated by the (2,2) harmonic

which gives Just two minima in the potential. However it is Just possible that

the superposition of the other tesseral harmonics could give rise to further

minima, partioularly by splitting the principal minima of the (2,2) harmonio

into a number of separate minima.

If the coefficients D Z(I) are assumed to be sufficiently constant over

the period in question, (53) could be integrated to give

.4<dI/t) 2 3n o  Jm(E/ao)LP (o) D(I) oo a(;-, ) a constant + O(e)

However this integral is more suspect and less useful than the corresponding

result (13) for a nearly equatorial satellite, since the inclination of the
6

orbit is changing with time . It is true that the inclination of an initially

equatorial orbit also changes with time, but aDLI8I vanishes for an equatorial

orbit although not for an inclined orbit. In fact two of the coefficients in

Table I change considerably with inclination; D3 0 becomes negative when the

inolination exceeds 400 and becomes positive again above 95 .0 Likewise D ;2

has zeroes at 340 and 800 inclination. The remaining coefficients in Table I

are positive for all inclinations.

Although the potential is very probably dominated by the (2,2) harmonic,

it is still interesting to consider the motion under the general (4,m) tesseral

harmonic alone. From (53), if only the (?,m) harmonic is present, there will

be 2a positions of equilibrium divided into two sets each of a as follows:
(i) ; - .+2p 1,,

(ii) ip .+. (2p. ,) 7/,,
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where p w O,1,2,...(.- 1). If the coefficient J P pm(O) Dea(I) is positive,
the former are unstable and the latter are stable, ad vice-versa if the

coefficient is negative. In any case the coefficient can be made positive by

suitably redefining T . so as to change the sign of J .. Assuming the

coefficient is positive, the substitution

p - u 2,/ + (2p +1) 7/m , (55)

changes the origin to a stable point, and reduces the equation of motion to

1.= 2  si 2 . o(e) ,(56)2 (6)

where

k2 =3n 2 m2 Jm(R/ao)l P(O) De(I) (57)

Since (56) is equivalent to (M1), the equations (42) to (47) hold with k

replaced by ktm.

7 CONCUSIONS

As is now well-known the very small longitudinal forces due to the slight

asymmetry of the Earth about its axis can have considerable effects on nearly

synchronous satellites. Because these forces can act continuously in one sense,
the energy of the satellite in its motion around the Earth slowly changes. As

a preliminary some further consideration has been given in the first part of

this Report to the special oede of a satellite in a circular equatorial orbit.

Here, as has been shown before, the motion of the satellite relative to the

Earth is simply that of a particle moving in a one-dimensional potential which,

apart from a constant factor, is the gravitational potential at synchronous

height on the equatorial plane. This involves only the even tesseral harmonics

(i.e. those with t- m even) since the odd harmonics vanish on the eauatorial

plane. Almost certainly the principal contribution is from the term involving

S202 which corresponds to an ellipticity of the Earth's equator. If the

satellite is sufficiently near to synchronism it can be captired and oscillate

within a trough of this potential.

In the main part of this Report these results are extended to orbits at

general inclination and which are not necessarily circular. In its motion

relative to the Earth such a satellite performs a figure-of-eight, which is
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symmetrio about the equator if the orbit is oiroular but is otherwise a

distorted three-dimensional ourve. The mathematioa method adopted is to

expand the disturbing function in terms of the usual elliptic elements and to

retain only the 'resonant' or long-period terms. Special attention has been

given to motion under theJ22 term alone. Finally the analysis is applied to

motion under the combination of all tesseral harmonics provided only that the

eooentrioity is small. It is fourA that the variation of the mean longitude

relative to the Earth is a simple extension of the corresponding result for

the circular equatorial orbit, and involves only the introduction of an extra

factor Dtm(I), depending only on the inclination I, for each tesseral harmonic.

As before, the motion in mean longitude is equivalent to that of a particle

moving in the appropriate one-dimensional potential, and the coefficients

D e(I) express how the satellite in its figure-of-eight motion samples the

longitudinal force due to each of the tesseral harmonics. Only the even

tesseral harmonics are involved since the odd harmonics are antisymmetrio about

the equator and their effects cancel out.

The analysis presented here should permit the determination of the

coefficients of the even tesseral harmonios from observations on synchronous

satellites. For at least some of these coefficients, the accuracy should be

higher than can currently be obtained from close-orbit satellites. Apart from

the converse application in predicting or controlling the motion of future

synchronous satellites, such results, possibly taken in conjunction with close-

earth results, should improve our knowledge of the shape of the geoid ad the

Earth's external gravitational field.
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